Hi Bruno Marchal 

Computers can only deal with what can be put into words, ie what can be 
discussed and shared. 
Consciousness or awareness is a wordless experience.  

There is a huge gulf between what we experience and what we say we experience.
The former is wordless, personal, private and subjective, the latter is is in 
language--shareable, 
public (experience converted into words and thus communicated) and objective 
version.
Thus there are the natural, unbreakable dualisms:

subjective    objective    
experience   spoken experience
wordless      in words
private         public
personal       shared
faith            belief 

etc.


Poets and novelists are good at converting experiences (what one can imagine) 
into words.
Most of us are not that good. Computers can only "think" in words so cannot 
experience anything.
They thus can thus not be conscious.

Roger , rclo...@verizon.net
8/12/2012 
----- Receiving the following content ----- 
From: Bruno Marchal 
Receiver: everything-list 
Time: 2012-08-11, 11:42:35
Subject: Re: God has no name




On 10 Aug 2012, at 18:45, Brian Tenneson wrote:


Yeah but you can't define what a set is either, so...



The difference, but is there really one?, is that we the notion of set we can 
agree on axioms and rules, so that we can discuss independently on the 
metaphysical baggage, as you pointed out once. This can be done both formally, 
in which case what we really do is an interview of a machine that we trust, or 
informally, betting on the human willingness to reason.


For example, with sets, we can agree on the fact that they are identified by 
their elements: the extensionality axiom:


For all x, y, z, if (x belongs to y   <->   x belongs to z) then y = z.


We might prefer to work in an intensional set theory, where a set is defined by 
their means of construct, and which is more relevant for the study of machines 
and processes. But then we do lambda calculus or elementary topoi, or we work 
in a variety of combinatory algebra. 


But it will not be a disagreement, as we know there can be different notion of 
set, and so different tools.


Likewise with consciousness. We might not been able to define it, but we can 
agree on principle on it, notably that, assuming comp, it is invariant for a 
set of computable transformations, like the lower level substitutions, and 
reason from that. We can agree that if X is conscious, then X cannot justify 
that through words.


Likewise with God. An informal definition could be that God is Reality, not 
necessarily as we observe or experience it but as it is. We can only hope or 
bet for such a thing. It might be a physical universe, or it might be a 
mathematical universe, or an arithmetical universe, but with comp it is a 
"theological universe" in the sense that comp separates clearly the 
communicable and the non communicable part of that reality, if it exists. Life 
and creativity develop on that frontier, as it develops also in between 
equilibrium and non equilibrium, between computable and non computable, between 
controllable and non controllable, etc.


And we can agree on axioms on "GOD", that is "REALITY" or "TRUTH". For example 
that it is unique, that we can search on it, that it is not definable, so that 
such words are really only meta pointer to it, etc.


The advantage of the definition of GOD by REALITY, or GOD = TRUTH, is that no 
honest believers, in any confessions, should have a problem with it, and for 
the atheists or the materialist GOD becomes a material physical universe a bit 
like 0, 1, and 2 became number when 'number' meant first 'numerous'.
Mathematicians always does that trick, to extend the definition of a concept so 
that we simplify the key general statements.


Is GOD a person? That might be an open problem for some, and an open problem 
for others. Truth might be subtile: in NeoPlatonism GOD (the ONE) is not a 
person, nor a creator, but from it emanates two other GODS (in the ancient 
greek sense, Plotinus call them hypostases) the third one being a person (the 
universal soul).


For all matter, we need only to agree on semi-axiomatic definition, the rest is 
(a bit boring imo) vocabulary discussions. It hides the real conceptual 
differences in the attempt to apprehend what is, or could be.


Bruno




On Fri, Aug 10, 2012 at 2:22 AM, Bruno Marchal <marc...@ulb.ac.be> wrote:

Hi Roger,


On 07 Aug 2012, at 11:53, Roger wrote:


Hi Bruno Marchal 


OUR FATHER, WHICH ART IN HEAVBEN,
HALLOWED BE THY NAME.

Luther said that to meditate of the sacredness of God
according to this phrase is the oldest prayer.

In old testament times, God's name was considered too sacred to speak
by the Jews. The King James Bible uses YHWH, the Jews never say "God" as far as 
I
know, they sometimes write it as G*d.

We have relaxed these constrictions in the protestant tradition,
use Jehovah and all sorts of  other sacfed names.


It is the problem with the notions of God, Whole, Truth, consciousness, etc. we 
can't define them. 
You can sum up Damascius by "one sentence on the ineffable is already one 
sentence too much, it can only miss the point". (But Damascius wrote thousand 
of pages on this!).


Like Lao Tseu said that the genuine wise man is mute, also. John Clark said it 
recently too!


This is actually well explained (which does not mean that the explanation is 
correct) by computer science: a universal machine can look inward and prove 
things about itself, including that there are true proposition that she cannot 
prove as far as she is consistent, that machine-truth is not expressible, etc. 
My last paper (in french) is entitled "la machine mystique" (the mystical 
machine) and concerns all the things that a machine might know without being 
able to justify it rationally and which might be counter-intuitive from her own 
point of view.


The word "god" is not problematical ... as long as we don't take the word too 
much seriously. You can say "I search God", but you can't say "I found God", 
and still less things like "God told me to tell you to send me money or you 
will go to hell". 


God is more a project or a hope for an explanation. It cannot be an explanation 
itself. For a scientist: it is more a problem than a solution, like 
consciousness, for example.


Bruno









Roger , rclo...@verizon.net
8/7/2012 Is life a cause/effect activity  ?
If so, what is the cause agent ?

----- Receiving the following content ----- 
From: Bruno Marchal 
Receiver: everything-list 
Time: 2012-08-07, 05:37:56
Subject: Re: God has no name




Hi Stephen,


On 8/6/2012 8:29 AM, Bruno Marchal wrote:

[SPK] Which is the definition I use. Any one that actually thinks that God is a 
person, could be a person, or is the complement (anti) of such, has truly not 
thought through the implications of such.

[BM

For me, and comp, it is an open problem.

[SPK]

   ? Why? It's not complicated! A person must be, at least, nameable. A person 
has always has a name.



[BM]

Why?


   Because names are necessary for persistent distinguishability. 


OK. You are using "name" in the logician sense of "definite description". With 
comp we always have a 3-name, but the first person have no name.






Let us try an informal proof by contradiction. Consider the case where it is 
*not* necessary for a person to have a name. What means would then exist for 
one entity to be distinguished from another? 


By the entity itself: no problem (and so this is not a problem for the personal 
evaluation of the measure). By some other entity?






We might consider the location of an entity as a proxy for the purposes of 
identification, but this will not work because entities can change location and 
a list of all of the past locations of an entity would constitute a name and 
such is not allowed in our consideration here. 


Sure. 






What about the 1p content of an entity, i.e. the private name that an entity 
has for itself with in its self-referential beliefs? 


It has no such name. "Bp & p", for example, cannot be described in arithmetic, 
despite being defined in arithmetical terms. It is like arithmetical truth, we 
can't define it in arithmetic language.






Since it is not communicable - as this would make the 1p aspect a non-first 
person concern and thus make it vanish - it cannot be a name. Names are 3p, 
they are public invariants that form from a consensus of many entities coming 
to an agreement, and thus cannot be determined strictly by 1p content. You 
might also note that the anti-foundation axiom is "every graph has a unique 
decoration". The decoration is the name! It is the name that allow for 
non-ambiguous identification.
   A number's name is its meaning invariant symbol representation class... 
Consider what would happen to COMP if entities had no names! Do I need to go 
any further for you to see the absurdity of persons (or semi-autonomous 
entities) not having names?








Say that it is X. There is something that is not that person and that something 
must therefore have a different name: not-X. What is God's name? ... It cannot 
be named because there is nothing that it is not! Therefore God cannot be a 
person. Transcendence eliminates nameability. The Abrahamist think that Satan 
is the anti-God, but that would be a denial of God's transcendence. There are 
reasons why Abrahamists do not tolerate logic, this is one of them.



With comp if God exists it has no name, but I don't see why it would make it a 
non person. God is unique, it does not need a name.


   God is unique because there is no complement nor alternative to it. 
Ambiguously stated: God is the totality of what is necessarily possible.



That is not bad in a first approximation. With comp, you can make it precise 
through the set of G?el numbers of the true arithmetical sentences. Obviously 
this is not a computable set, and it is not nameable by the machine (with 
comp), making set theory somehow too rich for comp. Of course, arithmetic 
contains or emulates a lot of entities believing in set theory, but we should 
not reify those beliefs in the ontology. It is better to keep them only in the 
machine epistemology.


On 8/6/2012 10:37 AM, Bruno Marchal wrote:

Is the translation or encoding a unique mapping? How many possible ways are 
available to encode B?



There is an infinity of way to encode "B". Some can be just intensionally 
equivalent (different codes but same logic), or extensionally equivalent but 
not intensionally equivalent, like Bp and Bp & Dt. They prove the same 
arithmetical proposition, but obeys different logic.


   OK, do you not see that the infinity of ways that "B" can be encoded makes 
the name of "B" ambiguous? 


I don't see that at all.






The name of "B" is at most 1p; a private name and thus subject to 
Wittgenstein's criticism.



All the names of "B" are third person notion, even if "B" itself cannot 
recognize its body or code. It is only "self-ambiguous", which is partially 
relevant for the measure problem. This is why I use modal logic to handle that 
situation, besides the fact that incompleteness leaves no real choice in the 
matter.


    The experiences are strictly 1p even if they are the intersection of an 
infinity of computations, but this is what makes then have a zero measure! 


Ah?






A finite and semi-closed consensus of 1p's allows for the construction of 
diaries and thus for the meaningfulness of "shared" experiences. But this is 
exactly what a non-primitive material world is in my thinking and nothing more. 
A material world is merely a synchronized collection of interfaces (aka 
synchronized or 'aligned' bisimulations) between the experiences of the 
computations. I use the concept of simulations (as discussed by David Deutsch 
in his book "The Fabric of Reality") to quantify the experiences of 
computations. You use the modal logical equivalent. I think that we are only 
having a semantical disagreement here. 


?


 The problem that I see in COMP is that if we make numbers (or any other named 
yet irreducible entity) as an ontological primitive makes the measure problem 
unsolvable because it is not possible to uniquely name relational schemata of 
numbers. The anti-foundation axiom of Azcel - every graph has a unique 
decoration - is not possible in your scheme because of the ambiguity of naming 
that Godel numbering causes. One always has to jump to a meta-theory to 
uniquely name the entities within a given theory (defined as in Godel's scheme) 
such that there is a bivalent truth value for the names. Interestingly, this 
action looks almost exactly like what happens in a forcing! So my claim is, 
now, that at best your step 8 is true in a forced extension.


1004.


On 8/6/2012 10:37 AM, Bruno Marchal wrote:

[SPK] At what level (relative) is the material hypostases?

[BM]

This is ambiguous. The material hypostases (Bp & Dt) defines the (high) level 
where machines (the person incarnated by the machine) can make the observations.

But it is preferable to extracts all those answer by yourself, for all what I 
say here needs to be extracted to get the UDA step by step.



Dear Bruno,

   OK, we seem to be in agreement on this. At the "high level" there is a 
meaningful notion of observations (and naming as I have discussed in previous 
posts) but never at the primitive level. 


OK.




My point is that this meaningfulness vanished anywhere outside of this high 
level. 


I agree.






We cannot pull back the meaning of a term when and if we pull back the term to 
the primitive level, because doing so, as you discuss in step 8, 


?




severs the connection that carries the relations that define the unique name 
that occurs at the high level. This is the problem of epiphenomena of 
immaterialism.




?




On 8/6/2012 10:37 AM, Bruno Marchal wrote:



We cannot use the Godel numbering because they are not unique,



?

If the names (description) were unique, there would be no first person 
indeterminacy. A enumerable infinity , non mechanically enumerable though, of 
explicit description of Stephen King exists in arithmetic, if comp is true.


Dear Bruno,

   But it does not exist uniquely as a singleton in arithmetic 


OK.




and that is the problem. 


The interesting problem, yes. That is the point.






It does exist as the equivalence relation on a infinite class of computations, 
but these equivalence classes do not have a power-set of which they are a 
uniquely defined. 


?




Names are only meaningful when and if they are 3p.



Sure.


Bruno






http://iridia.ulb.ac.be/~marchal/








-- 
You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to 
everything-list+unsubscr...@googlegroups.com.
For more options, visit this group at 
http://groups.google.com/group/everything-list?hl=en.



http://iridia.ulb.ac.be/~marchal/








-- 
You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to 
everything-list+unsubscr...@googlegroups.com.
For more options, visit this group at 
http://groups.google.com/group/everything-list?hl=en.





-- 
You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to 
everything-list+unsubscr...@googlegroups.com.
For more options, visit this group at 
http://groups.google.com/group/everything-list?hl=en.



http://iridia.ulb.ac.be/~marchal/

-- 
You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to 
everything-list+unsubscr...@googlegroups.com.
For more options, visit this group at 
http://groups.google.com/group/everything-list?hl=en.

Reply via email to