Esse problema caiu na Olimpíada Iberoamericana de 2009 que eu participei.
Foi o problema 5 da prova e lá pedia para provar injetividade e
sobrejetividade.

Em qua, 17 de fev de 2021 00:16, Anderson Torres <
torres.anderson...@gmail.com> escreveu:

> Em dom., 14 de fev. de 2021 às 17:20, Claudio Buffara
> <claudio.buff...@gmail.com> escreveu:
> >
> > Será que essa sequência é sobrejetiva (sobre os racionais positivos)?
> > Porque como a(2^n) = n+1, ela certamente atinge todos os naturais, de
> modo que é ilimitada, superiormente e inferiormente (já que a(2^n + 1) =
> 1/(n+1) ).
> > Mesmo que não seja, seria interessante descobrir que racionais positivos
> ela não atinge.
> > É suficiente provar que todos os racionais entre 0 e 1 são atingidos (no
> caso, pelos termos de ordem ímpar), mas não sei se isso facilita.
> > Vale uma exploração numérica, talvez com uma planilha.
>
>
> Se eu não errei as contas, acredito que sim. Afinal basta reverter a
> fracao continua.
>
> As operacoes parecem ser bem limitadas, contudo nao e necessario muito
> mais que isso para gerar um racional qualquer:
>
> - Função INC: x -> x+1
> - Função REV: x -> 1/x
>
> Talvez haja algum invariante que permita prever que cada operacao esta
> fadada a cair em 1
>
> >
> >
> > Abs,
> > Claudio.
> >
> > Enviado do meu iPhone
> >
> > Em 14 de fev. de 2021, à(s) 13:57, Anderson Torres <
> torres.anderson...@gmail.com> escreveu:
> >
> > 
> >
> >
> > Em sáb., 13 de fev. de 2021 às 17:56, Jeferson Almir <
> jefersonram...@gmail.com> escreveu:
> >>
> >> Amigos, peço ajuda em provar a injetividade dessa sequência que seria
> uma saída para provar a unica ocorrência do racional que aparece nela.
> Estou andando em círculos tentando montar uma possível indução.
> >>
> >>
> >> Dado a sequência a_1 = 1 e a_2n = a_n  + 1 e a_2n+1 = 1/a_2n.
> >>
> >> Prove que para todo racional positivo que ocorre na sequência, ocorre
> uma única vez.
> >>
> >>
> >
> > Acho que e uma boa usar fracao continua aqui.
> >
> > Se a_n = [c0; c1, c2, ..., ck], temos entao a_1 = [1] e
> >
> > a_2n =Â [(1+c0); c1, c2, ..., ck] (chamemos isso de operacao E)
> > a_2n+1 = [0; (1+c0), c1, c2, ..., ck] (chamemos isso de operacao O)
> >
> >
> > A partir disso, acredito que a bijecao fica quase obvia, bastando
> formalizar algumas inducoes marotas.
> >
> > Primeiramente, nenhuma representacao da forma [...,N,1] vai surgir dai a
> partir de a_2. Isso pode ser demonstrado por inducao mesmo: ck=1 somente
> no caso [1], e depois dele a funcao a_n so modifica o comeco da cadeia,
> nunca o final dela.
> >
> > Assim sendo, temos certeza que nao tem como um racional aparecer uma vez
> na forma canonica e outra na forma alternativa. E, por conseguinte, se duas
> fracoes tem comprimentos diferentes, elas devem ser diferentes. E fracoes
> com comprimentos iguais diferem se e somente se pelo menos um dos
> componentes diferir.
> >
> > Agora, a funcao recursiva age de duas formas. Uma delas altera o
> comprimento em 1, e a outra mantém. A que altera, só altera acrescentando
> o 0 na cabeceira. A que não altera, incrementa a cabeceira.
> >
> > Desta forma, é possível gerar de maneira unica qualquer numeroÂ
> racional comecando do 1.
> >
> > - Qualquer fracao de comprimento 1 pode ser gerada simplesmente
> aplicando a operacao E tantas vezes quantas forem necessarias. E tambem
> nao e possivel fazer isso de outra maneira, pois a operacao O aumentara o
> comprimento de maneira irreversivel.
> >
> > - Dada uma fracao com comprimento K, temos duas sub inducoes para fazer:
> >
> > + A fracao tem comprimento K e comeca com 0.
> >
> > Â  Entao ela foi gerada por uma operacao O. O elemento que a gerou tinha
> menos componentes, os quais satisfazem a hipotese de inducao.
> >
> > + A fracao tem comprimento K e comeca com algo maior que 0.
> >
> > Entao ela foi gerada por uma operacao E. A fracao da qual ela foi gerada
> difere unicamente no primeiro elemento, o qual antes era menor. Assim
> sendo, e possivel reduzir isso ate chegar no caso anterior.
> >
> > E isso demonstra recursivamente a unicidade e existencia!
> >
> >
> >
> >> --
> >> Esta mensagem foi verificada pelo sistema de antivírus e
> >> acredita-se estar livre de perigo.
> >
> >
> > --
> > Esta mensagem foi verificada pelo sistema de antivírus e
> > acredita-se estar livre de perigo.
> >
> >
> > --
> > Esta mensagem foi verificada pelo sistema de antivírus e
> > acredita-se estar livre de perigo.
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
>  acredita-se estar livre de perigo.
>
>
> =========================================================================
> Instru�ões para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
> =========================================================================
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a