Nada como uma bijeção N -> Q para encerrar o dia!

Se pensar nas operacoes INC e REV, podemos usar um algoritmo assim:

- Se o número é maior que 1, usa DEC (inversa de INC)
- Se o número é menor que 1, usa INV
- Se o número é 1, pare

Como demonstrar que este procedimento sempre encerrará em 1, não
importando que número racional começou? Acho que no fundo isso é só
uma maneira de encodar fracoes continuas mesmo.

Em ter., 16 de fev. de 2021 às 20:35, Matheus Secco
<matheusse...@gmail.com> escreveu:
>
> Esse problema caiu na Olimpíada Iberoamericana de 2009 que eu participei. Foi 
> o problema 5 da prova e lá pedia para provar injetividade e sobrejetividade.
>
> Em qua, 17 de fev de 2021 00:16, Anderson Torres 
> <torres.anderson...@gmail.com> escreveu:
>>
>> Em dom., 14 de fev. de 2021 às 17:20, Claudio Buffara
>> <claudio.buff...@gmail.com> escreveu:
>> >
>> > Será que essa sequência é sobrejetiva (sobre os racionais positivos)?
>> > Porque como a(2^n) = n+1, ela certamente atinge todos os naturais, de modo 
>> > que é ilimitada, superiormente e inferiormente (já que a(2^n + 1) = 
>> > 1/(n+1) ).
>> > Mesmo que não seja, seria interessante descobrir que racionais positivos 
>> > ela não atinge.
>> > É suficiente provar que todos os racionais entre 0 e 1 são atingidos (no 
>> > caso, pelos termos de ordem ímpar), mas não sei se isso facilita.
>> > Vale uma exploração numérica, talvez com uma planilha.
>>
>>
>> Se eu não errei as contas, acredito que sim. Afinal basta reverter a
>> fracao continua.
>>
>> As operacoes parecem ser bem limitadas, contudo nao e necessario muito
>> mais que isso para gerar um racional qualquer:
>>
>> - Função INC: x -> x+1
>> - Função REV: x -> 1/x
>>
>> Talvez haja algum invariante que permita prever que cada operacao esta
>> fadada a cair em 1
>>
>> >
>> >
>> > Abs,
>> > Claudio.
>> >
>> > Enviado do meu iPhone
>> >
>> > Em 14 de fev. de 2021, à(s) 13:57, Anderson Torres 
>> > <torres.anderson...@gmail.com> escreveu:
>> >
>> > 
>> >
>> >
>> > Em sáb., 13 de fev. de 2021 às 17:56, Jeferson Almir 
>> > <jefersonram...@gmail.com> escreveu:
>> >>
>> >> Amigos, peço ajuda em provar a injetividade dessa sequência que seria 
>> >> uma saída para provar a unica ocorrência do racional que aparece nela. 
>> >> Estou andando em círculos tentando montar uma possível indução.
>> >>
>> >>
>> >> Dado a sequência a_1 = 1 e a_2n = a_n  + 1 e a_2n+1 = 1/a_2n.
>> >>
>> >> Prove que para todo racional positivo que ocorre na sequência, ocorre 
>> >> uma única vez.
>> >>
>> >>
>> >
>> > Acho que e uma boa usar fracao continua aqui.
>> >
>> > Se a_n = [c0; c1, c2, ..., ck], temos entao a_1 = [1] e
>> >
>> > a_2n =Â [(1+c0); c1, c2, ..., ck] (chamemos isso de operacao E)
>> > a_2n+1 = [0; (1+c0), c1, c2, ..., ck] (chamemos isso de operacao O)
>> >
>> >
>> > A partir disso, acredito que a bijecao fica quase obvia, bastando 
>> > formalizar algumas inducoes marotas.
>> >
>> > Primeiramente, nenhuma representacao da forma [...,N,1] vai surgir dai a 
>> > partir de a_2. Isso pode ser demonstrado por inducao mesmo: ck=1 somente 
>> > no caso [1], e depois dele a funcao a_n so modifica o comeco da cadeia, 
>> > nunca o final dela.
>> >
>> > Assim sendo, temos certeza que nao tem como um racional aparecer uma vez 
>> > na forma canonica e outra na forma alternativa. E, por conseguinte, se 
>> > duas fracoes tem comprimentos diferentes, elas devem ser diferentes. E 
>> > fracoes com comprimentos iguais diferem se e somente se pelo menos um dos 
>> > componentes diferir.
>> >
>> > Agora, a funcao recursiva age de duas formas. Uma delas altera o 
>> > comprimento em 1, e a outra mantém. A que altera, só altera 
>> > acrescentando o 0 na cabeceira. A que não altera, incrementa a cabeceira.
>> >
>> > Desta forma, é possível gerar de maneira unica qualquer numero racional 
>> > comecando do 1.
>> >
>> > - Qualquer fracao de comprimento 1 pode ser gerada simplesmente aplicando 
>> > a operacao E tantas vezes quantas forem necessarias. E tambem nao e 
>> > possivel fazer isso de outra maneira, pois a operacao O aumentara o 
>> > comprimento de maneira irreversivel.
>> >
>> > - Dada uma fracao com comprimento K, temos duas sub inducoes para fazer:
>> >
>> > + A fracao tem comprimento K e comeca com 0.
>> >
>> > Â  Entao ela foi gerada por uma operacao O. O elemento que a gerou tinha 
>> > menos componentes, os quais satisfazem a hipotese de inducao.
>> >
>> > + A fracao tem comprimento K e comeca com algo maior que 0.
>> >
>> > Entao ela foi gerada por uma operacao E. A fracao da qual ela foi gerada 
>> > difere unicamente no primeiro elemento, o qual antes era menor. Assim 
>> > sendo, e possivel reduzir isso ate chegar no caso anterior.
>> >
>> > E isso demonstra recursivamente a unicidade e existencia!
>> >
>> >
>> >
>> >> --
>> >> Esta mensagem foi verificada pelo sistema de antivírus e
>> >> acredita-se estar livre de perigo.
>> >
>> >
>> > --
>> > Esta mensagem foi verificada pelo sistema de antivírus e
>> > acredita-se estar livre de perigo.
>> >
>> >
>> > --
>> > Esta mensagem foi verificada pelo sistema de antivírus e
>> > acredita-se estar livre de perigo.
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>>  acredita-se estar livre de perigo.
>>
>>
>> =========================================================================
>> Instru�ões para entrar na lista, sair da lista e usar a lista em
>> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
>> =========================================================================
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.


=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================

Responder a