If you have the time, this video explains how the cooling occurs:


With the additional info provided by Brian Ahern upthread, my best guess
now is that magnetic flux produces electron movement. These changes in the
magnetic field produced by the magnetic billet are induced by the magnetic
flux change produced when the input current flows through the input coil.

What I would like to know is what coils of the three coils are the input
and output coils.

The random motion of the magnetic domains in the crystal structure of the
billet due to both the uncertainty principle and thermal movement of
magnetic domains might be where excess magnetic flux is coming from. This
input magnetic flux might induce that "magnetic noise" to increase.

Just by flipping a few spins on the outside edge of the billet using the
weak input magnetic flux might produce and avalanche of spin movement
throughout the billet in many surrounding spins throughout the billet.

The key to producing more output than input is to adjust the input to the
minimum amount necessary to produce an increase in magnetic noise from the

How the three coils are layered: first applied, then second, then finally
third would be nice to know.

My guess is the the coil applied to the edge would be the input coil. The
output coils are the length and width coils. The output coils would be full
wave rectified.

If magnetic amplification is coming from spin flipping, then using separate
magnets might not work since the spin flipping would encounter
discontinuity going from one magnet to another. The avalanche would stop at
the edge of each individual magnet.

Here is a image of how a slight disturbance in a spin wave can produce lots
of magnetic flux.


On Wed, Feb 22, 2017 at 4:22 PM, David Roberson <dlrober...@aol.com> wrote:

> Brian,
> That is the most interesting characteristic to me as well.  It seems
> logical that if the outside surface is cooler than the ambient that heat
> energy must be entering the Billet.  Where this energy goes is the main
> question I would like to see answered.  Of course we realize that energy is
> also entering the Billet and surrounding components from the external
> battery via the drive pulses.
> Apparently, you are an eye witness to the observation that an electric
> light is illuminated and the battery is receiving charge for an extended
> period of time.  This observation implies that energy is coming from some
> source while the device is in operation.  The obvious first guess is that
> heat energy is extracted from the ambient region and converted into
> electrical energy.
> We should not be willing to give up on the thermodynamic laws too readily
> however.  Keeping that thought, one might believe that a magnetic form of
> heat pump is taking place, except it is not clear where the pumped heat is
> being exhausted, while there appears to be electrical energy generated.
> Magnetic refrigeration has been around for a while and it is actually a
> form of heat pumping.  And, magnetic refrigeration obeys the thermodynamic
> laws.
> So Brian, did you notice any portion of the Billet and surrounding
> materials becoming warmer than the ambient?  If not, you have a really
> interesting phenomena to pursue.
> Dave
> -----Original Message-----
> From: Brian Ahern <ahern_br...@msn.com>
> To: vortex-l <vortex-l@eskimo.com>
> Sent: Wed, Feb 22, 2017 3:09 pm
> Subject: Re: [Vo]:DESCRIBING THE MANELAS Phenomenon
> The magnetocaloric cooling keeps my interest high.
> ------------------------------
> *From:* Chris Zell <chrisz...@wetmtv.com>
> *Sent:* Wednesday, February 22, 2017 10:39 AM
> *To:* vortex-l@eskimo.com
> *Subject:* RE: [Vo]:DESCRIBING THE MANELAS Phenomenon
> I swear to God if I ever stumble into anything overunity, I’m gonna
> rectify the bejeezus out of it.  Pure DC in and pure DC out, none of this
> apparent power crap.
> Magnetic amps bring up Bearden’s MEG – which I don’t think ever worked. I
> suspect its output was apparent and not real, as above.

Reply via email to