Whenever we can get the spin of an atom to move: whenever we can get a spin
to lose OR gain energy, that energy can be transferred to an electron with
high efficiency.  There are a number of ways that atomic spin can be
excited: magnetocaloric where heat energy is transferred to the spin of an
atom embedded in a lattice through metal lattice phonons of that lattice or
quantum mechanical vibrations that are inherent in the heisenberg
uncertainty principle. The key is to amplify this naturally occurring spin
movements enough to move electrons strong enough to generate usable
voltages and currents. That amplification mechanism might be done by
setting up a coherence boundary condition that involves a change of state
between coherence and incoherence where a slight external magnetic
perturbation triggers this change of state.

Barium ferrite might be a magnetic current superconductor where magnetic
currents flow inside its lattice.

An example of this  magnetic current superconductor might be a magnet that
allows magnetic flux lines to pass through it or not based on an
external parameter: may be temperature or an external magnetic perturbation as
an example.

See (Barium ferrite is a magnetic insulator)


Current-induced switching in a magnetic insulator

The spin Hall effect in heavy metals converts charge current into pure spin
current, which can be injected into an adjacent ferromagnet to exert a
torque. This spin–orbit torque (SOT) has been widely used to manipulate the
magnetization in metallic ferromagnets. In the case of magnetic insulators
(MIs), although charge currents cannot flow, spin currents can propagate,
but current-induced control of the magnetization in a MI has so far
remained elusive. Here we demonstrate spin-current-induced switching of a
perpendicularly magnetized thulium iron garnet film driven by charge
current in a Pt overlayer. We estimate a relatively large spin-mixing
conductance and damping-like SOT through spin Hall magnetoresistance and
harmonic Hall measurements, respectively, indicating considerable spin
transparency at the Pt/MI interface. We show that spin currents injected
across this interface lead to deterministic magnetization reversal at low
current densities, paving the road towards ultralow-dissipation spintronic
devices based on MIs.

On Fri, Feb 24, 2017 at 5:29 PM, Jones Beene <jone...@pacbell.net> wrote:

> Whenever purported "free energy" phenomena turn up with no apparent source
> of excess energy, there are a limited number of candidates which seem to
> rear their ugly heads.
> This only applies to LENR in the absence of real nuclear energy, but the
> nucleus can be part of a combined MO. In rough order of scientific validity
> and usefulness, these candidates for the source of gain are:
> 1) ZPE (aether, raumenergie, dynamical Casimir effect, space energy,
> vacuum energy, quantum energy, Hotson epo field, quantum foam, etc)
> 2) CMB cosmic microwave background (3K-CMB)
> 2) neutrinos
> 4) Schumann resonance
> 5) Fair weather field
> 6) Magnetic field of earth
> 7) Ambient heat (plus deep heat sink)
> 8) Below absolute zero (deeper heat sink)
> 9) Anti-gravity effect
> There are more but they tend to be different wording or combinations of
> the above ... and even more incredulous. Many combinations are possible.
> The main reason for bringing this up is that recently CMB has been
> estimated to be slightly more robust than once thought and with new ways to
> couple to it. The CMB is probably a subset of ZPE but the energy density of
> space in terms of the microwave-only spectrum is the equivalent of 0.261 eV
> per cubic cm, though the actual temperature of 2.7 K is much less than that
> would indicate - and the peak of the spectrum is at a frequency of 160.4
> GHz. ZPE as a whole may be more robust, but CMB is adequate for many uses.
> The peak intensity of the background is about... ta ad.. a whopping 385
> MJy/Sr (that's MegaJanskys per Steradian (I kid you not) which is a
> candidate for the oddest metric in all of free energy, maybe all of physics
> ... along with furlongs per fortnight).
> At any rate, if one could invent the way to couple to CMB easily, it would
> be possible to see an effective temperature equivalent in an excellent
> range for thermionics, for instance. The ~2 mm wavelength is interesting
> too. There have been fringe reports of anomalies with 13 gauge wire but
> anything with the number 13 is going to bring out the worst ...

Reply via email to