On 1/27/2013 6:54 PM, Telmo Menezes wrote:

On Mon, Jan 28, 2013 at 12:40 AM, Stephen P. King <stephe...@charter.net <mailto:stephe...@charter.net>> wrote:

    On 1/27/2013 6:07 PM, Telmo Menezes wrote:
    Dear Bruno and Stephen,

    On Sun, Jan 27, 2013 at 6:27 PM, Stephen P. King
    <stephe...@charter.net <mailto:stephe...@charter.net>> wrote:

        On 1/27/2013 7:19 AM, Bruno Marchal wrote:

            The big bang remains awkward with computationalism. It
            suggest a long and deep computations is going through our
            state, but comp suggest that the big bang is not the

        Dear Bruno,

            I think that comp plus some finite limit on resources =
        Big Bang per observer.

    Couldn't the Big Bang just be the simplest possible state?

    Hi Telmo,

        Yes, if I can add "...that a collection of observers can agree
    upon" but that this simplest possible state is uniquely in the
    past for all observers (that can communicate with each other)
    should not be just postulated to be the case. It demands an

It's uniquely in the past for all complex observers
Hi Telmo,

I would partition up "all possible observers" into mutually communicating sets. Not all observers can communicate with each other and it is mutual communication that, I believe, contains the complexity of one's universe. Basically my reasoning forllows Wheeler's /It from Bit/ idea.


- It cannot contain a complex observer

How do we know this? We are, after all, speculating about what we can only infer about given what we observe now.

- It is so simple that it is coherent with any history

     Simplicity alone does not induce consistency, AFAIK...

That doesn't mean it's the beginning, just that it's a likely predecessor to any other state.

> The word "predecessor' worries me, it assumes some way to determine causality even when measurements are impossible. Sure, we can just stipulate monotonicity of states, but what

> would be the gain?

I mean predecessor in the sense that there are plausible sequences of transformations that it's at the root of. These transformations include world branching, of course.

I am playing around with the possibility that monotonicity should not be assumed. After all, observables in QM are complex valued and the real numbers that QM predicts (as probabilities of outcomes) only obtain when a basis is chosen and a squaring operation is performed. Basically, that *is* is not something that has any particular ordering to it. Here I am going against the arguments of many people, including Julian Barbour.

    The more complex a state is, the smaller the number of states
    that it is likely to be a predecessor of.

        Sure, what measure of complexity do you like? There are many
    and if we allow physical laws to vary, infinitely so... I like the
    Blum and Kolmogorov measures, but they are still weak...

I had Kolmogorv in mind and it's the best I can offer. I agree, it's still week and that's a bummer.

Maybe we should drop the desiderata of a measure and focus on the locality of observers and its requirements.



You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to 
Visit this group at http://groups.google.com/group/everything-list?hl=en.
For more options, visit https://groups.google.com/groups/opt_out.

Reply via email to