[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-20 Por tôpico Anderson Torres
Em seg., 17 de ago. de 2020 às 12:14, Claudio Buffara escreveu: > > Eu acho que o Eisenstein inventou este critério pra polinômios da forma x^n + > a ou, mais geralmente, pra polinômios ciclotômicos. > Daí funciona bem. > > On Mon, Aug 17, 2020 at 11:02 AM Esdras Muniz > wrote: >> >> E se p=3,

Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-17 Por tôpico qedtexte
Sauda,c~oes, Legal o estudo dox^3+9. Sobre oEisenstein generalizado (teorema 3 em http://yufeizhao.com/olympiad/intpoly.pdf;), tenho duas dvidas: Theorem 3(Extended Eisenstein).Letf(x) =anxn+an1xn1++a1x+a0be a polynomial with integer coefficients such thatp|aifor 0i k,pﰀ|/akandp2ﰀ|/a0.

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-17 Por tôpico Claudio Buffara
Eu acho que o Eisenstein inventou este critério pra polinômios da forma x^n + a ou, mais geralmente, pra polinômios ciclotômicos. Daí funciona bem. On Mon, Aug 17, 2020 at 11:02 AM Esdras Muniz wrote: > E se p=3, e p divide N^2+9, então p^2 divide N^2+9. > > Então o critério de Eisenstein

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-17 Por tôpico Esdras Muniz
E se p=3, e p divide N^2+9, então p^2 divide N^2+9. Então o critério de Eisenstein realmente não é tão abrangente. Será que tem algum outro critério que cubra casos em que o de Eisenstein não cubra? Em seg, 17 de ago de 2020 09:46, Claudio Buffara escreveu: > Boa! Se p <> 3 mas p divide 3N e

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-17 Por tôpico Claudio Buffara
Boa! Se p <> 3 mas p divide 3N e 3N^2, então p divide N ==> p não divide N^3 + 9. On Sun, Aug 16, 2020 at 10:51 PM Esdras Muniz wrote: > Tenta com x^3+9. > > Em dom, 16 de ago de 2020 15:24, Claudio Buffara < > claudio.buff...@gmail.com> escreveu: > >> f(x) em Z[x], bem entendido... >> >> >> On

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-16 Por tôpico Esdras Muniz
Tenta com x^3+9. Em dom, 16 de ago de 2020 15:24, Claudio Buffara escreveu: > f(x) em Z[x], bem entendido... > > > On Sun, Aug 16, 2020 at 3:08 PM Claudio Buffara > wrote: > >> Que tal essa aqui? >> Prove ou disprove que, dado um polinômio f(x), irredutível sobre Q, >> existe um inteiro N tal

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio redutível ?

2019-11-10 Por tôpico lumpa lumpa
ok On Sun, Nov 10, 2019 at 1:26 PM Bernardo Freitas Paulo da Costa < bernardo...@gmail.com> wrote: > Aproveito para repassar o email do Luís, com as correções que ele > efetuou sobre meu rascunho e, mais importante, a motivação do > problema. > > On Wed, Nov 6, 2019 at 8:42 PM Luís Lopes wrote:

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio Inteiro

2019-05-02 Por tôpico Jeferson Almir
Por nada Pedro !! E sen1º é um número algébrico . Abraço. Em qui, 2 de mai de 2019 às 10:52, Pedro José escreveu: > Bom dia! > Jeferson, > obrigado! Pensava, na verdade tinha certeza que sen 1grau era > transcendente. > Fui até pesquisar o teorema d*e *Lindemann-Weierstrass*, *que nem me >

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio Inteiro

2019-05-02 Por tôpico Pedro José
Bom dia! Jeferson, obrigado! Pensava, na verdade tinha certeza que sen 1grau era transcendente. Fui até pesquisar o teorema d*e *Lindemann-Weierstrass*, *que nem me recordava o nome, mas é para sen1, mas não um grau e sim radiano. Falha de armazenamento na memória. Sds, PJMS Em qua, 1 de mai

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio Inteiro

2019-05-01 Por tôpico Jeferson Almir
Puxa Raph mais uma vez muito obrigado!! Em ter, 30 de abr de 2019 às 19:17, Ralph Teixeira escreveu: > Oi, Jeferson. > > Sua ideia funciona: comece com P(x,y)=(y+ix)^180+1. Como voce disse, > P(s,c)=0 onde c=cos1º e s=sin1º. > > Agora olhemos para a parte real deste polinomio: ateh dah para

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio Inteiro

2019-04-30 Por tôpico Ralph Teixeira
Oi, Jeferson. Sua ideia funciona: comece com P(x,y)=(y+ix)^180+1. Como voce disse, P(s,c)=0 onde c=cos1º e s=sin1º. Agora olhemos para a parte real deste polinomio: ateh dah para escrever explicitamente, mas eu vou me limitar a dizer que eh algo do tipo R(x,y)=SOMA(a_k*y^(2k)*x^(180-2k))+1 onde

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio com raízes reais

2018-07-05 Por tôpico Artur Steiner
Agora que vc falou, me lembrei do teorema. Ele implica que, se todas as raízes de P estiverem sobre uma mesma reta do plano complexo, então todas as raízes de P' estarão sobre esta mesma reta. Particularizando-se para a reta real, temos a conclusão desejada. Há muito tempo vi esse teorema no

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio com raízes reais

2018-07-05 Por tôpico Claudio Buffara
https://en.wikipedia.org/wiki/Gauss%E2%80%93Lucas_theorem 2018-07-05 12:45 GMT-03:00 Artur Steiner : > Não sabia não > > Artur Costa Steiner > > Em Qui, 5 de jul de 2018 08:04, Claudio Buffara > escreveu: > >> E o curioso é que esse é o teorema de Gauss-LUCAS... >> >> 2018-07-05 1:48 GMT-03:00

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio com raízes reais

2018-07-05 Por tôpico Artur Steiner
Não sabia não Artur Costa Steiner Em Qui, 5 de jul de 2018 08:04, Claudio Buffara escreveu: > E o curioso é que esse é o teorema de Gauss-LUCAS... > > 2018-07-05 1:48 GMT-03:00 Lucas Colucci : > >> Interessante que esse fato generaliza para o plano complexo: as raízes de >> p' estão no fecho

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio com raízes reais

2018-07-04 Por tôpico Bruno Visnadi
Opa, sim, quis dizer relativo. Em 4 de julho de 2018 23:54, Claudio Buffara escreveu: > Ou, melhor dizendo, mínimo ou máximo local. > > 2018-07-04 23:52 GMT-03:00 Claudio Buffara : > >> Você quer dizer mínimo ou máximo relativo, certo? >> >> 2018-07-04 23:42 GMT-03:00 Bruno Visnadi : >> >>> Se

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-24 Por tôpico Esdras Muniz
Agora, como provar esse lema? Em 24 de novembro de 2016 18:17, Israel Meireles Chrisostomo < israelmchrisost...@gmail.com> escreveu: > o gugu é foda > > Em 24 de novembro de 2016 18:50, Pedro José > escreveu: > >> Boa noite! >> >> Com a observação do Gugu, ficou fácil

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-24 Por tôpico Israel Meireles Chrisostomo
o gugu é foda Em 24 de novembro de 2016 18:50, Pedro José escreveu: > Boa noite! > > Com a observação do Gugu, ficou fácil compreender a filosofia da solução; > pois, antes eu estava assim: "Marte chamando Terra, responda!". > O contra exemplo apresentado pelo Anderson

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-24 Por tôpico Pedro José
Boa noite! Com a observação do Gugu, ficou fácil compreender a filosofia da solução; pois, antes eu estava assim: "Marte chamando Terra, responda!". O contra exemplo apresentado pelo Anderson Torres, não atende o fato de cada par de coeficientes do polinômios terem o mdc =1, como proposto. Porém,

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-24 Por tôpico Larissa Fernandes
Quero sair da lista obm-l Em 24 de novembro de 2016 10:42, Ronei Lima Badaró escreveu: > Para sair do grupo, favor seguir as instruções no link > http://www.mat.puc-rio.br/~obmlistas/obm-l.html > > Em 24/11/2016 10:37, "Larissa Fernandes"

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-24 Por tôpico Ronei Lima Badaró
Para sair do grupo, favor seguir as instruções no link http://www.mat.puc-rio.br/~obmlistas/obm-l.html Em 24/11/2016 10:37, "Larissa Fernandes" escreveu: > Olá, eu desejo sair do grupo. > > Em 23 de novembro de 2016 19:34, escreveu: > >>Oi

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-24 Por tôpico Larissa Fernandes
Olá, eu desejo sair do grupo. Em 23 de novembro de 2016 19:34, escreveu: >Oi pessoal, >Na solução do link os coeficientes do polinômio são primos, e numa > fatoração qualquer um dos fatores vai ser mônico (a menos de sinal), donde > o produto dos módulos de suas raízes

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio

2014-03-10 Por tôpico Pacini Bores
Obrigado Professor Ralph pelo esclarecimento. Vejo que deveria ter pensado um pouco antes !! Abraços Pacini Em 9 de março de 2014 22:10, Ralph Teixeira ralp...@gmail.com escreveu: Hm, cade o enunciado original do Marcone mesmo...? Ah, aqui: era para provar que NAO

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio

2014-03-09 Por tôpico Ralph Teixeira
Contrariando o Nehab, acho que o Nehab tinha razao sim. :) :) Pense no algoritmo da divisao de P(x) por Z(x) -- se o coeficiente do primeiro termo de Z(x) for 1 (eh o caso, Z(x)=(x-1)(x-2)(x-3)), entao soh fazemos subtracoes e multiplicacoes (todas as divisoes sao por 1). Entao certamente o

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio

2014-03-09 Por tôpico Pacini Bores
Desculpe Ralph, Mas se o termo de maior grau de P(x) não for inteiro , a divisão dele por 1 será um número não inteiro; isso não garante que P(x) tenha coeficientes inteiros. Estou errado ? O problema não é para provar que os coeficientes de P(x) são inteiros ? Poderia esclarecer melhor para

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio

2014-03-09 Por tôpico Ralph Teixeira
Hm, cade o enunciado original do Marcone mesmo...? Ah, aqui: era para provar que NAO EXISTIA P(x) com coeficientes inteiros tal que blah-blah... Entao, fazemos por contradicao: suponha que HOUVESSE P(x) com coeficientes inteiros Use a ideia do Nehab, e chegariamos a um polinomio

[obm-l] Re: [obm-l] Re:[obm-l] Re: [obm-l] Polinômio

2006-12-21 Por tôpico João Luís Gomes Guimarães
Veja bem Leandro, Q(x) não se anulou. Melhor dizendo, nem dá pra saber qual o valor de Q(x) pra x=-1 e x=1. O que acontece é que, olhando a expressão P(x) = (x+1)(x-1)Q(x) + R(x), fica claro que TODO O TERMO (x+1)(x-1)Q(x) se anula para x=-1 e x=1. Então, para esses valores particulares de x,

Re: [obm-l] Re: [obm-l] Re:[obm-l] Re: [obm-l] Polinômio

2006-12-21 Por tôpico Leandro Morelato
Ficou sim, obrigado! Em 21/12/06, João Luís Gomes Guimarães [EMAIL PROTECTED] escreveu: Veja bem Leandro, Q(x) não se anulou. Melhor dizendo, nem dá pra saber qual o valor de Q(x) pra x=-1 e x=1. O que acontece é que, olhando a expressão P(x) = (x+1)(x-1)Q(x) + R(x), fica claro que TODO O