[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-20 Por tôpico Anderson Torres
Em seg., 17 de ago. de 2020 às 12:14, Claudio Buffara escreveu: > > Eu acho que o Eisenstein inventou este critério pra polinômios da forma x^n + > a ou, mais geralmente, pra polinômios ciclotômicos. > Daí funciona bem. > > On Mon, Aug 17, 2020 at 11:02 AM Esdras Muniz > wrote: >> >> E se p=3,

Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-17 Por tôpico qedtexte
Sauda,c~oes, Legal o estudo dox^3+9. Sobre oEisenstein generalizado (teorema 3 em http://yufeizhao.com/olympiad/intpoly.pdf;), tenho duas dvidas: Theorem 3(Extended Eisenstein).Letf(x) =anxn+an1xn1++a1x+a0be a polynomial with integer coefficients such thatp|aifor 0i k,pﰀ|/akandp2ﰀ|/a0.

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-17 Por tôpico Claudio Buffara
Eu acho que o Eisenstein inventou este critério pra polinômios da forma x^n + a ou, mais geralmente, pra polinômios ciclotômicos. Daí funciona bem. On Mon, Aug 17, 2020 at 11:02 AM Esdras Muniz wrote: > E se p=3, e p divide N^2+9, então p^2 divide N^2+9. > > Então o critério de Eisenstein

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-17 Por tôpico Esdras Muniz
E se p=3, e p divide N^2+9, então p^2 divide N^2+9. Então o critério de Eisenstein realmente não é tão abrangente. Será que tem algum outro critério que cubra casos em que o de Eisenstein não cubra? Em seg, 17 de ago de 2020 09:46, Claudio Buffara escreveu: > Boa! Se p <> 3 mas p divide 3N e

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-17 Por tôpico Claudio Buffara
Boa! Se p <> 3 mas p divide 3N e 3N^2, então p divide N ==> p não divide N^3 + 9. On Sun, Aug 16, 2020 at 10:51 PM Esdras Muniz wrote: > Tenta com x^3+9. > > Em dom, 16 de ago de 2020 15:24, Claudio Buffara < > claudio.buff...@gmail.com> escreveu: > >> f(x) em Z[x], bem entendido... >> >> >> On

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-16 Por tôpico Esdras Muniz
Tenta com x^3+9. Em dom, 16 de ago de 2020 15:24, Claudio Buffara escreveu: > f(x) em Z[x], bem entendido... > > > On Sun, Aug 16, 2020 at 3:08 PM Claudio Buffara > wrote: > >> Que tal essa aqui? >> Prove ou disprove que, dado um polinômio f(x), irredutível sobre Q, >> existe um inteiro N tal

Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-16 Por tôpico qedtexte
Sauda,c~oes, oi Cludio, Que tal essa aqui? Prove ou disprove que, dado um polinmio f(x), irredutvel sobre Q, existe um inteiro N tal que a irredutibilidade de f pode ser provada pelo critrio de Eisenstein aplicado a f(x+N). Vou esperar a resposta. Pelo exemplo do site

Re: [obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-16 Por tôpico qedtexte
Sauda,c~oes novamente, Obrigado pelas respostas. As hipteses so as que vocs falaram: tudo em Z[x]. Na verdade tudo comeou com o problema de saber se f(x)=x^4 + x^3 + 4x + 1 irredutvel em Z[x]. Testando a=-1, f(x-1)=x^4 - 3x^3 + 3x^2 + 3x - 3 e agora por Eisenstein com p=3, f(x) irredutvel.

[obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-16 Por tôpico Claudio Buffara
f(x) em Z[x], bem entendido... On Sun, Aug 16, 2020 at 3:08 PM Claudio Buffara wrote: > Que tal essa aqui? > Prove ou disprove que, dado um polinômio f(x), irredutível sobre Q, existe > um inteiro N tal que a irredutibilidade de f pode ser provada pelo critério > de Eisenstein aplicado a

[obm-l] Re: [obm-l] Re: [obm-l] polinômio irredutível

2020-08-16 Por tôpico Claudio Buffara
Que tal essa aqui? Prove ou disprove que, dado um polinômio f(x), irredutível sobre Q, existe um inteiro N tal que a irredutibilidade de f pode ser provada pelo critério de Eisenstein aplicado a f(x+N). On Sun, Aug 16, 2020 at 2:31 PM Matheus Secco wrote: > O melhor jeito é pensar na

[obm-l] Re: [obm-l] polinômio irredutível

2020-08-16 Por tôpico Matheus Secco
O melhor jeito é pensar na contrapositiva (supondo que você esteja falando sobre irredutibilidade em Z[x] ou até em Q[x]): se f(x) fatora como g(x)*h(x), então f(x+a) fatora como g(x+a) *h(x+a) e é claro que uma vez que g(x) e h(x) têm coeficientes inteiros, então g(x+a) e h(x+a) também têm. A

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-24 Por tôpico Esdras Muniz
Agora, como provar esse lema? Em 24 de novembro de 2016 18:17, Israel Meireles Chrisostomo < israelmchrisost...@gmail.com> escreveu: > o gugu é foda > > Em 24 de novembro de 2016 18:50, Pedro José > escreveu: > >> Boa noite! >> >> Com a observação do Gugu, ficou fácil

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-24 Por tôpico Israel Meireles Chrisostomo
o gugu é foda Em 24 de novembro de 2016 18:50, Pedro José escreveu: > Boa noite! > > Com a observação do Gugu, ficou fácil compreender a filosofia da solução; > pois, antes eu estava assim: "Marte chamando Terra, responda!". > O contra exemplo apresentado pelo Anderson

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-24 Por tôpico Pedro José
Boa noite! Com a observação do Gugu, ficou fácil compreender a filosofia da solução; pois, antes eu estava assim: "Marte chamando Terra, responda!". O contra exemplo apresentado pelo Anderson Torres, não atende o fato de cada par de coeficientes do polinômios terem o mdc =1, como proposto. Porém,

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-24 Por tôpico Larissa Fernandes
Quero sair da lista obm-l Em 24 de novembro de 2016 10:42, Ronei Lima Badaró escreveu: > Para sair do grupo, favor seguir as instruções no link > http://www.mat.puc-rio.br/~obmlistas/obm-l.html > > Em 24/11/2016 10:37, "Larissa Fernandes"

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-24 Por tôpico Ronei Lima Badaró
Para sair do grupo, favor seguir as instruções no link http://www.mat.puc-rio.br/~obmlistas/obm-l.html Em 24/11/2016 10:37, "Larissa Fernandes" escreveu: > Olá, eu desejo sair do grupo. > > Em 23 de novembro de 2016 19:34, escreveu: > >>Oi

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-24 Por tôpico Larissa Fernandes
Olá, eu desejo sair do grupo. Em 23 de novembro de 2016 19:34, escreveu: >Oi pessoal, >Na solução do link os coeficientes do polinômio são primos, e numa > fatoração qualquer um dos fatores vai ser mônico (a menos de sinal), donde > o produto dos módulos de suas raízes

Re: [obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-23 Por tôpico gugu
Oi pessoal, Na solução do link os coeficientes do polinômio são primos, e numa fatoração qualquer um dos fatores vai ser mônico (a menos de sinal), donde o produto dos módulos de suas raízes será pelo menos 1, uma contradição se todas as raízes têm módulo menor que 1. Abraços,

[obm-l] Re: [obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-23 Por tôpico Bernardo Freitas Paulo da Costa
2016-11-23 14:21 GMT-02:00 Anderson Torres : > Isso não me parece verdadeiro - (2x-1)^1000 é um contraexemplo. Acho que tem uma hipótese implícita de que todas as raízes são distintas. Abraços, -- Bernardo Freitas Paulo da Costa > Em 13 de novembro de 2016 14:20,

[obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-23 Por tôpico Anderson Torres
Existem alguns critérios legaizinhos para irredutibilidade, Se achar algo te envio. Em 23 de novembro de 2016 14:21, Anderson Torres escreveu: > Isso não me parece verdadeiro - (2x-1)^1000 é um contraexemplo. > > Em 13 de novembro de 2016 14:20, Adrian Alexander

[obm-l] Re: [obm-l] Polinômio irredutível em Z

2016-11-23 Por tôpico Anderson Torres
Isso não me parece verdadeiro - (2x-1)^1000 é um contraexemplo. Em 13 de novembro de 2016 14:20, Adrian Alexander Delgado escreveu: > É sobre esse problema: > (Irã 2007) Existe uma sequência de inteiros a_0, a_1, a_2, ... tais que > (a_i,a_j)=1 para i diferente de