[obm-l] Re: [obm-l] Função phi de Euler

2022-07-15 Por tôpico Anderson Torres
Em qui, 14 de jul de 2022 11:52, Rubens Vilhena Fonseca < rubens.vilhen...@gmail.com> escreveu: > Saudações a todos da lista. > É um fato que para primos p ímpares, a função de Euler phi(p)=p-1 é sempre > um valor par. > Os primos 7, 13, 19, 31, 37, 67, 73, 79, 97, ... tem valores pares >

[obm-l] Re: [obm-l] Re: [obm-l] Função phi de Euler

2022-07-15 Por tôpico Anderson Torres
Em qui, 14 de jul de 2022 12:19, Esdras Muniz escreveu: > Quis dizer φ(p)=p-1. > > Em qui, 14 de jul de 2022 12:02, Esdras Muniz > escreveu: > >> Oi(o)=p-1, aí isso só vale se o primo for da firma 6k+1. >> > phi(4+3)=7-1 >> Em qui, 14 de jul de 2022 11:52, Rubens Vilhena Fonseca < >>

[obm-l] Re: [obm-l] Função phi de Euler

2022-07-14 Por tôpico Esdras Muniz
Quis dizer φ(p)=p-1. Em qui, 14 de jul de 2022 12:02, Esdras Muniz escreveu: > Oi(o)=p-1, aí isso só vale se o primo for da firma 6k+1. > > Em qui, 14 de jul de 2022 11:52, Rubens Vilhena Fonseca < > rubens.vilhen...@gmail.com> escreveu: > >> Saudações a todos da lista. >> É um fato que para

[obm-l] Re: [obm-l] Função phi de Euler

2022-07-14 Por tôpico Esdras Muniz
Oi(o)=p-1, aí isso só vale se o primo for da firma 6k+1. Em qui, 14 de jul de 2022 11:52, Rubens Vilhena Fonseca < rubens.vilhen...@gmail.com> escreveu: > Saudações a todos da lista. > É um fato que para primos p ímpares, a função de Euler phi(p)=p-1 é sempre > um valor par. > Os primos 7, 13,

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função

2021-05-29 Por tôpico Israel Meireles Chrisostomo
obrigado Livre de vírus. www.avast.com . <#DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2> Em qua., 19 de mai.

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função

2021-05-19 Por tôpico Anderson Torres
Em seg., 26 de abr. de 2021 às 17:18, Israel Meireles Chrisostomo escreveu: > > Mas aí então a+bi e b+ai são os mesmos números Não são. 4+5i e 5+4i são diferentes, e 4+5i < 5+4i por essas regras. > > Em seg, 26 de abr de 2021 13:36, Anderson Torres > escreveu: >> >> Em qui., 22 de abr. de

[obm-l] Re: [obm-l] Re: [obm-l] Função

2021-04-26 Por tôpico Israel Meireles Chrisostomo
Mas aí então a+bi e b+ai são os mesmos números Em seg, 26 de abr de 2021 13:36, Anderson Torres < torres.anderson...@gmail.com> escreveu: > Em qui., 22 de abr. de 2021 às 07:19, Israel Meireles Chrisostomo > escreveu: > > > > Me desculpem se eu estou falando bobagem, mas considere uma função

[obm-l] Re: [obm-l] Função

2021-04-26 Por tôpico Anderson Torres
Em qui., 22 de abr. de 2021 às 07:19, Israel Meireles Chrisostomo escreveu: > > Me desculpem se eu estou falando bobagem, mas considere uma função com > domínio complexo, então essa função não pode ser bijetora, pois toda função > bijetora ou é crescente ou é decrescente, mas não há ordem nos

[obm-l] Re: [obm-l] Re: [obm-l] Função

2021-04-23 Por tôpico Israel Meireles Chrisostomo
Obrigado Em qui, 22 de abr de 2021 11:25, Artur Costa Steiner < artur.costa.stei...@gmail.com> escreveu: > O que vc disse só vale para funções contínuas de R em R. No domínio > complexo, não vale. > Nos complexos, uma função inteira é injetora se, e somente se, for um > mapeamento afim não

[obm-l] Re: [obm-l] Função

2021-04-22 Por tôpico Artur Costa Steiner
O que vc disse só vale para funções contínuas de R em R. No domínio complexo, não vale. Nos complexos, uma função inteira é injetora se, e somente se, for um mapeamento afim não constante, caso em que é bijetora. Artur Em qui., 22 de abr. de 2021 07:19, Israel Meireles Chrisostomo <

[obm-l] Re: [obm-l] Função

2021-04-22 Por tôpico Eduardo Henrique Rodrigues do Nascimento
Cara, toda função real contínua e bijetora é monótona. Como contraexemplo se f não for contínua: x+1 para x no intervalo [0,1[ f(x)={x, para x≥2 e x<0 x-1 para x no intervalo [1,2[ então f não é crescente em todo o seu domínio: 1/2<3/2; mas f(1/2)=3/2>1/2=f(3/2). além

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função parte inteira

2021-02-03 Por tôpico Ralph Costa Teixeira
Hm, confere o enunciado - era parte inteira, ou inteiro mais proximo? On Wed, Feb 3, 2021, 18:39 joao pedro b menezes wrote: > Obrigado pela dica! Honestamente creio que existe um erro nesse problema. > Fazendo alguns casos na mão é possivel perceber que isso sempre resulta em > 8n + 7. Essa é

[obm-l] Re: [obm-l] Re: [obm-l] Função parte inteira

2021-02-03 Por tôpico joao pedro b menezes
Obrigado pela dica! Honestamente creio que existe um erro nesse problema. Fazendo alguns casos na mão é possivel perceber que isso sempre resulta em 8n + 7. Essa é a prova: "Provar que ( n^(1/3) + ( n + 2)^(1/3) )³ < 8n + 8. Abrindo a potência, temos: 2n + 2 + 3 * ( (n² ( n + 2))^(1/3) + (n(n +

[obm-l] Re: [obm-l] Função parte inteira

2021-02-03 Por tôpico Ralph Costa Teixeira
Sem tempo agora, mas olhando por alto eu aproximaria o que estah dentro do () por 2(n+1)^(1/3), o que levaria imediatamente a 8(n+1). Serah que a parte inteira daquela coisa eh 8(n+1)? Entao eu tentaria abrir os cubos, subtrair 8(n+1), e mostrar que o que sobra eh menor que 1. Serah que

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função Desconhecida

2020-01-15 Por tôpico Luiz Antonio Rodrigues
Olá, Anderson! Bom dia! Visitei o site que você indicou. É muito bom! Muito obrigado! Abs Em qua, 15 de jan de 2020 8:11 AM, Anderson Torres < torres.anderson...@gmail.com> escreveu: > Em sex., 20 de dez. de 2019 às 18:24, Luiz Antonio Rodrigues > escreveu: > > > > Olá, Esdras! > > Eu de novo!

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função Desconhecida

2020-01-15 Por tôpico Anderson Torres
Em sex., 20 de dez. de 2019 às 18:24, Luiz Antonio Rodrigues escreveu: > > Olá, Esdras! > Eu de novo! > Você, ou alguém do grupo, pode me indicar um bom material relacionado às > funções transcendentes? > É um assunto que me interessa bastante! > Abraços! > Luiz > > Em sex, 20 de dez de 2019

[obm-l] Re: [obm-l] Re: [obm-l] Função Desconhecida

2019-12-20 Por tôpico Luiz Antonio Rodrigues
Olá, Esdras! Eu de novo! Você, ou alguém do grupo, pode me indicar um bom material relacionado às funções transcendentes? É um assunto que me interessa bastante! Abraços! Luiz Em sex, 20 de dez de 2019 4:38 PM, Esdras Muniz escreveu: > Acho que essa função é trancendente. > > Em sex, 20 de dez

[obm-l] Re: [obm-l] Re: [obm-l] Função Desconhecida

2019-12-20 Por tôpico Luiz Gustavo Alves Brandão
Como faz pra sair do grupo? Meu e-mail luizbg...@gmail.com. Em sex., 20 de dez. de 2019 às 17:14, Luiz Antonio Rodrigues < rodrigue...@gmail.com> escreveu: > Olá, Esdras! > Muito obrigado pela resposta! > Vou fazer uma pesquisa sobre este assunto! > Um abraço! > Luiz > > Em sex, 20 de dez de

[obm-l] Re: [obm-l] Função Desconhecida

2019-12-20 Por tôpico Luiz Antonio Rodrigues
Olá, Esdras! Muito obrigado pela resposta! Vou fazer uma pesquisa sobre este assunto! Um abraço! Luiz Em sex, 20 de dez de 2019 4:38 PM, Esdras Muniz escreveu: > Acho que essa função é trancendente. > > Em sex, 20 de dez de 2019 14:42, Luiz Antonio Rodrigues < > rodrigue...@gmail.com> escreveu:

[obm-l] Re: [obm-l] Função Desconhecida

2019-12-20 Por tôpico Esdras Muniz
Acho que essa função é trancendente. Em sex, 20 de dez de 2019 14:42, Luiz Antonio Rodrigues < rodrigue...@gmail.com> escreveu: > Olá, pessoal! > Tudo bem? > Estou tentando, há alguns dias, resolver o seguinte problema: > > Preciso descobrir uma função f(x) cuja derivada é sen(x^3). Sabe-se que

[obm-l] Re: [obm-l] Função boa

2019-05-24 Por tôpico Claudio Buffara
Ou seja, f(1), f(3), ..., f(2n-1) têm a mesma paridade e f(2), f(4), ..., f(2n) têm a mesma paridade. Pra contar o número de funções boas, é melhor dividir em casos: f(par) = par e f(ímpar) = par ==> 2^n*2^n = (2^n)^2 f(par) = par e f(ímpar) = ímpar ==> 2^n*3^n f(par) = ímpar e f(ímpar) = par ==>

[obm-l] Re: [obm-l] Função não periódica

2018-08-29 Por tôpico Claudio Buffara
Este problema já foi proposto e resolvido nesta lista. []s, Claudio. On Wed, Aug 29, 2018 at 3:57 PM Artur Steiner wrote: > Suponhamos que f: R ---> R seja contínua, periódica e não constante. > Mostre que g(x) = f(x^2) não é periódica Eu já vi isto em outros fóruns. > Muitas vezes mostram

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função Composta

2018-05-13 Por tôpico Bruno Visnadi
Realmente eu me expressei mal ali. Eu quis dizer que o menor N deve ser 1, 2 ou 5. Em 13 de maio de 2018 21:22, Jeferson Almir escreveu: > Boa noite. > Eu só não entendi essa passagem > “ Para todo a, queremos que N seja igual a 1, 2 ou 5 (os divisores de 50 > menores

[obm-l] Re: [obm-l] Re: [obm-l] Função Composta

2018-05-13 Por tôpico Jeferson Almir
Boa noite. Eu só não entendi essa passagem “ Para todo a, queremos que N seja igual a 1, 2 ou 5 (os divisores de 50 menores ou iguais a 5).“ Pois pra mim eu teria que levar em conta somente os divisores de 50 Em dom, 13 de mai de 2018 às 19:43, Bruno Visnadi < brunovisnadida...@gmail.com>

[obm-l] Re: [obm-l] Função Composta

2018-05-13 Por tôpico Bruno Visnadi
Não sei se ficou meio confuso: De fato a função é injetiva, pois se f(a) = f(b) então f^50(a) = f^50(b) e a = b. E claramente é sobrejetiva, portanto, é bijetiva. Existem 5! = 120 bijeções de S em S. Vamos descontar as que não tem a propriedade desejada. Em cada bijeção de S em S, dado um a,

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função Composta

2018-05-13 Por tôpico Jeferson Almir
Valeu Raph e os demais. Aprendi muito com vcs!! Em sáb, 12 de mai de 2018 às 20:25, Ralph Teixeira escreveu: > Oops, eh verdade, esqueci de mostrar que f nao tem ponto fixo em Z_2005 > (obviamente f nao tem ponto fixo, pois f(f(a))<>a). > > Suponha por absurdo que

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função Composta

2018-05-12 Por tôpico Ralph Teixeira
Oops, eh verdade, esqueci de mostrar que f nao tem ponto fixo em Z_2005 (obviamente f nao tem ponto fixo, pois f(f(a))<>a). Suponha por absurdo que f(a)=a+K.2005 para algum a em {0,1,...2004}, com K natural. Entao f(a+K.2005)=f(f(a))=a+2005. Agora, usando nossa propriedadezinha:

[obm-l] Re: [obm-l] Re: [obm-l] Função Composta

2018-05-12 Por tôpico Bernardo Freitas Paulo da Costa
Oi Ralph, 2018-05-11 20:03 GMT-03:00 Ralph Teixeira : > (Vou supor que 0 eh natural; se nao for, apenas troque 0 por 2005 ali > embaixo e ajeite as coisas) > > Primeiro: f eh injetiva. De fato, f(a)=f(b) => f(f(a))=f(f(b)) => > a+2005=b+2005 => a=b. > > Segundo: para todo n

[obm-l] Re: [obm-l] Função Composta

2018-05-12 Por tôpico Pedro Soares
Só pra constar, nas primeiras linhas da minha resposta o correro é 2005, não 2015. E meu ultimo argumento é que para existir uma função f(f(n)) = n + k esse k tem que ser par. On Saturday, 12 May 2018, Pedro Soares wrote: > 1- f(n) é injetiva > f(a) = f(b) => f(f(a)) =

[obm-l] Re: [obm-l] Função Composta

2018-05-12 Por tôpico Pedro Soares
1- f(n) é injetiva f(a) = f(b) => f(f(a)) = f(f(b)) => a + 2015 = b + 2015 => a=b 2- Suponha que existem k números naturais que não pertencem a imagem de f, sabemos que k<2005. Chamamos de A o conjunto desses k números. Agora, como f é injetiva, o complementar em relação a N da imagem de f(f(n))

[obm-l] Re: [obm-l] Função Composta

2018-05-11 Por tôpico Ralph Teixeira
(Vou supor que 0 eh natural; se nao for, apenas troque 0 por 2005 ali embaixo e ajeite as coisas) Primeiro: f eh injetiva. De fato, f(a)=f(b) => f(f(a))=f(f(b)) => a+2005=b+2005 => a=b. Segundo: para todo n natural, f(n+2005)=f(f(f(n)))=f(n)+2005. Portanto, por indução, para qualquer K natural,

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função Composta

2018-05-11 Por tôpico Bruno Visnadi
Vou considerar que 0 é natural (para N = {1, 2, 3...} a prova é análoga). Lema 1: f é injetora. Prova: Se f(a) = f(b) então f(f(a)) = f(f(b)) e a = b. Lema 2: Se f(a) > 2004, então a está na imagem de f. Prova: Se f(a) > 2004, então f(f(f(a) - 2005)) = f(a). Como a função é injetora, f(f(a) -

[obm-l] Re: [obm-l] Re: [obm-l] Função Composta

2018-05-11 Por tôpico Rodrigo Ângelo
acho que, de forma mais geral, não pode existir nenhuma f: |N -> |N, tal que f(f(n)) = n*p(n) + i, onde g(n) seja qualquer polinômio natural de n e i é um número ímpar On Fri, May 11, 2018 at 6:37 PM Rodrigo Ângelo wrote: > Se f não for polinomial, então f deve ser da

Re: [obm-l] Re: [obm-l] Função Composta

2018-05-11 Por tôpico Claudio Buffara
Mas pode ser que f não seja afim. Enviado do meu iPhone Em 11 de mai de 2018, à(s) 17:21, Rodrigo Ângelo escreveu: > Se f : |N -> |N, f(n) = an + m, com a e m constantes naturais, então > teríamos > f(f(n)) = a(an + m) + m > f(f(n)) = (a^2)n + am + m > > Com

[obm-l] Re: [obm-l] Re: [obm-l] Função Composta

2018-05-11 Por tôpico Rodrigo Ângelo
Se f não for polinomial, então f deve ser da forma f(n) = g(n) + m, onde g(n) é uma função não polinomial de n e m é um natural ou zero f(f(n)) = g(f(n)) + m Com f(f(n)) = n + 2005, teríamos g(f(n)) + m = n + 2005 g(f(n)) = n + 2005 - m onde m é uma constante natural então g(f(n)) é um

[obm-l] Re: [obm-l] Re: [obm-l] Função Composta

2018-05-11 Por tôpico Rodrigo Ângelo
Se f for qualquer polinômio de grau maior que 1 então f(f(n)) também é um polinomio maior que 1. Daí já dá pra eliminar toda f polinomial On Fri, May 11, 2018 at 6:15 PM Julio César Saldaña Pumarica < saldana...@pucp.edu.pe> wrote: > com isso prova que f nao pode ser linear mas o enunciado

[obm-l] Re: [obm-l] Função Composta

2018-05-11 Por tôpico Julio César Saldaña Pumarica
com isso prova que f nao pode ser linear mas o enunciado pareces mais geral El viernes, 11 de mayo de 2018, Rodrigo Ângelo escribió: > Se f : |N -> |N, f(n) = an + m, com a e m constantes naturais, então > teríamos > f(f(n)) = a(an + m) + m > f(f(n)) = (a^2)n + am + m >

[obm-l] Re: [obm-l] Re: [obm-l] Função Composta

2018-05-11 Por tôpico Bruno Visnadi
Acredito que isso só prova que a função não pode ser um polinômio do primeiro grau, mas não prova que ela não existe. Em 11 de maio de 2018 17:21, Rodrigo Ângelo escreveu: > Se f : |N -> |N, f(n) = an + m, com a e m constantes naturais, então > teríamos > f(f(n)) = a(an

[obm-l] Re: [obm-l] Re: [obm-l] Função Composta

2018-05-11 Por tôpico Pedro José
Boa noite! Porém, existem funções de|N em |N que não as afins. Saudações, PJMS Em 11 de mai de 2018 17:33, "Rodrigo Ângelo" escreveu: > Se f : |N -> |N, f(n) = an + m, com a e m constantes naturais, então > teríamos > f(f(n)) = a(an + m) + m > f(f(n)) = (a^2)n + am + m

[obm-l] Re: [obm-l] Função Composta

2018-05-11 Por tôpico Rodrigo Ângelo
Se f : |N -> |N, f(n) = an + m, com a e m constantes naturais, então teríamos f(f(n)) = a(an + m) + m f(f(n)) = (a^2)n + am + m Com f(f(n)) = n + 2005, teríamos a = 1 e m = 2005/2, absurdo, pois m deve ser um número natural. On Fri, May 11, 2018 at 10:51 AM Jeferson Almir

Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função não periódica

2018-04-14 Por tôpico Artur Costa Steiner
Isso é consequência do fato de que x —> sen(x^2) é contínua mas não uniformemente contínua. Artur Enviado do meu iPad Em 14 de abr de 2018, à(s) 1:10 PM, Claudio Buffara escreveu: > Que tal começar provando que x --> sen(x^2) não é periódica? > >

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função não periódica

2018-04-14 Por tôpico Pedro Angelo
Eu imagino que a continuidade de f seja necessária para esse problema. Estou tentando aqui, mas não consigo encontrar um exemplo de função f periódica descontínua (em todos os pontos) tal que g seja periódica. Alguém tem alguma ideia? 2018-04-14 13:50 GMT-03:00 Pedro Angelo

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função não periódica

2018-04-14 Por tôpico Pedro Angelo
Aparentemente, a minha foi desnecessariamente complicada mesmo. De qualquer forma, acho que a ideia é a mesma né: usar o fato de que g oscila cada vez mais rápido à medida que x-->oo. 2018-04-14 13:36 GMT-03:00 Artur Steiner : > A prova que encontrei baseia-se no

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função não periódica

2018-04-14 Por tôpico Pedro Angelo
Vou seguir um caminho diferente do que vcs estavam seguindo, porque sou ruim com demonstrações mais algébricas :) Sabemos que f é periódica. Para facilitar as contas, digamos que 1 seja período de f (se não for, adaptar a demonstração é fácil). Digamos que g seja periódica, de período T. Vamos

[obm-l] Re: [obm-l] Re: [obm-l] Função não periódica

2018-04-14 Por tôpico Artur Steiner
A prova que encontrei baseia-se no fato de que, se g é contínua e periódica, então g é unformemente contínua. Sendo a composição de duas funcões contínuas, f e x --> x^2, g é contínua. Vamos mostrar que não é uniformemente contínua, o que implica que não seja periódica. Como f não é constante,

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função não periódica

2018-04-14 Por tôpico Pedro Angelo
Acho que a definição mais abrangente de "função periódica" é "qualquer função que apresente um período". Um "período" é qualquer número positivo T tal que para todo x, f(x+T)=f(x). Eu dei o exemplo da função indicadora dos racionais ali em cima: f(x)=1 quando x é racional, e f(x)=0 quando x é

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função não periódica

2018-04-14 Por tôpico Claudio Buffara
Mas a existência de um período fundamental (o menor real positivo T tal que f(x) = f(x+T) para todos x, x + T no domínio de f) não é o que define uma função periódica não-constante (contínua ou não)? 2018-04-14 13:03 GMT-03:00 Pedro Angelo : > Eu quando li o enunciado

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função não periódica

2018-04-14 Por tôpico Claudio Buffara
Que tal começar provando que x --> sen(x^2) não é periódica? 2018-04-14 13:04 GMT-03:00 Claudio Buffara : > Eu também fiquei inseguro em relação a isso e também notei que não usei > (pelo menos não explicitamente) a continuidade de f. > > Mas g(raiz(x+kT)) =

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função não periódica

2018-04-14 Por tôpico Claudio Buffara
Eu também fiquei inseguro em relação a isso e também notei que não usei (pelo menos não explicitamente) a continuidade de f. Mas g(raiz(x+kT)) = g(raiz(x+(k+1)T) não só para um número x fixo, mas para cada x >= -kT: um intervalo infinito. Será que isso não é suficiente para estabelecer a

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função não periódica

2018-04-14 Por tôpico Pedro Angelo
Eu quando li o enunciado original, não reparei no "contínua". Tentei provar, e não consegui. Sabendo que é contínua, dá pra usar o fato de que uma função periódica não-constante contínua sempre tem um período fundamental. Demonstração: seja f uma função periódica que não apresenta período

[obm-l] Re: [obm-l] Re: [obm-l] Função não periódica

2018-04-14 Por tôpico Bernardo Freitas Paulo da Costa
Oi Claudio, 2018-04-14 10:54 GMT-03:00 Claudio Buffara : > f é periódica (digamos, de período T > 0). > > Suponhamos que g também seja periódica, digamos de período P. > > Para todo x, e todo k em N tal que x+kT >= 0, g(raiz(x+kT)) = f(x+kT) = > f(x+(k+1)T) =

[obm-l] Re: [obm-l] Função não periódica

2018-04-14 Por tôpico Claudio Buffara
f é periódica (digamos, de período T > 0). Suponhamos que g também seja periódica, digamos de período P. Para todo x, e todo k em N tal que x+kT >= 0, g(raiz(x+kT)) = f(x+kT) = f(x+(k+1)T) = g(raiz(x+(k+1)T)) ==> raiz(x+(k+1)T) - raiz(x+kT) = nP, para algum n em N. Mas tomando k suficientemente

[obm-l] Re: [obm-l] Função não periódica

2018-04-13 Por tôpico Rodrigo Ângelo
Eu não consegui provar, mas intuitivamente ela não pode ser periódica mesmo. Como f é periódica, então existe p real não nulo tal que f(x) = f(x + np) para todo n inteiro, x pertencente ao domínio de f. Se g também fosse periódica, teríamos que f levaria todo x e x+np para o mesmo resultado, e

[obm-l] Re: [obm-l] Função máximo inteiro

2017-07-29 Por tôpico Guilherme Oliveira
Para que [x] = [y], a diferença entre x e y deve estar entre 0 e 2 Ao mesmo tempo, sabemos que [n/10] >= [n/11] Então, 0 < n/10 - n/11 < 2 n/11 < n/10 < n/11 + 2 10n < 11n < 10n + 220 n > 0 e n < 220 Ainda podemos dividir em 2 casos: n/11 < n/10 < n/11 + 1 -> 0 < n < 110 Nesse caso, [n/10]

[obm-l] Re: [obm-l] Função máximo inteiro

2017-07-28 Por tôpico Israel Meireles Chrisostomo
Agora os valores inferiores a 110 eu teria que testar kkk Em 28 de julho de 2017 17:20, Israel Meireles Chrisostomo < israelmchrisost...@gmail.com> escreveu: > quer dizer a derivada função sem os colchetes, que é maior do que a função > entre colchetes > > Em 28 de julho de 2017 17:19, Israel

[obm-l] Re: [obm-l] Função máximo inteiro

2017-07-28 Por tôpico Israel Meireles Chrisostomo
É fácil ver que 110 é uma solução dessa equação.Observe que a igualdade acima implica nas desigualdades abaixo: [n/11]<=n/10 -1 a igualdade ocorre quando n=110, mas observe que n/10 cresce mais rápido do que n/11, basta observar que a derivada da primeira é 1/10 e da segunda 1/11 Em 28 de julho

[obm-l] Re: [obm-l] Função máximo inteiro

2017-07-28 Por tôpico Israel Meireles Chrisostomo
quer dizer a derivada função sem os colchetes, que é maior do que a função entre colchetes Em 28 de julho de 2017 17:19, Israel Meireles Chrisostomo < israelmchrisost...@gmail.com> escreveu: > É fácil ver que 110 é uma solução dessa equação.Observe que a igualdade > acima implica nas

[obm-l] Re: [obm-l] Função máximo inteiro

2017-07-28 Por tôpico Israel Meireles Chrisostomo
Desculpe é exatamente o contrário do que eu fiz Em 28 de julho de 2017 17:04, Israel Meireles Chrisostomo < israelmchrisost...@gmail.com> escreveu: > De onde vc retirou essa questão? > > Em 28 de julho de 2017 16:47, Israel Meireles Chrisostomo < > israelmchrisost...@gmail.com> escreveu: > >>

[obm-l] Re: [obm-l] Função máximo inteiro

2017-07-28 Por tôpico Israel Meireles Chrisostomo
De onde vc retirou essa questão? Em 28 de julho de 2017 16:47, Israel Meireles Chrisostomo < israelmchrisost...@gmail.com> escreveu: > logo 110 é a única solução > > Em 28 de julho de 2017 16:47, Israel Meireles Chrisostomo < > israelmchrisost...@gmail.com> escreveu: > >> Observe que isto

[obm-l] Re: [obm-l] Função máximo inteiro

2017-07-28 Por tôpico Israel Meireles Chrisostomo
logo 110 é a única solução Em 28 de julho de 2017 16:47, Israel Meireles Chrisostomo < israelmchrisost...@gmail.com> escreveu: > Observe que isto implica nas desigualdades abaixo: > [n/11]>=n/10 -1 > [n/10]>=n/11+1 > n/110=n/10-n/11>=[n/10]-n/11>1 logo não há soluções menores do que 110 > da

[obm-l] Re: [obm-l] Função máximo inteiro

2017-07-28 Por tôpico Israel Meireles Chrisostomo
Observe que isto implica nas desigualdades abaixo: [n/11]>=n/10 -1 [n/10]>=n/11+1 n/110=n/10-n/11>=[n/10]-n/11>1 logo não há soluções menores do que 110 da mesma forma -n/110=n/11-n/10>=[n/11]-n/10 >=-1 o que implica que 1>n/110 e portanto não existem soluções maiores do que 110 Em 28 de julho

[obm-l] Re: [obm-l] Função máximo inteiro

2017-07-28 Por tôpico Israel Meireles Chrisostomo
Da mesma forma -n/110=n/11-n/10>=[n/11]-n/10 >=-1 o que implica que 1>n/110 e potanto não existem soluções maiores do que 110 Em 28 de julho de 2017 16:43, Israel Meireles Chrisostomo < israelmchrisost...@gmail.com> escreveu: > n/110=n/10-n/11>=[n/10]-n/11>1 logo não há soluções menores doq ue

[obm-l] Re: [obm-l] Função máximo inteiro

2017-07-28 Por tôpico Israel Meireles Chrisostomo
n/110=n/10-n/11>=[n/10]-n/11>1 logo não há soluções menores doq ue 110 Em 28 de julho de 2017 16:42, Israel Meireles Chrisostomo < israelmchrisost...@gmail.com> escreveu: > Desculpe errei > > Em 28 de julho de 2017 16:35, Israel Meireles Chrisostomo < > israelmchrisost...@gmail.com> escreveu: >

[obm-l] Re: [obm-l] Função máximo inteiro

2017-07-28 Por tôpico Israel Meireles Chrisostomo
Desculpe errei Em 28 de julho de 2017 16:35, Israel Meireles Chrisostomo < israelmchrisost...@gmail.com> escreveu: > Observe que isto implica nas desigualdades abaixo: > [n/11]>=n/10 -1 > [n/10]>=n/11+1 > Observe também que a igualdade ocorre para n=110 , mas [n/10]-n/11 >= > n/10-n/11=n/110>1

[obm-l] Re: [obm-l] Função máximo inteiro

2017-07-28 Por tôpico Israel Meireles Chrisostomo
Observe que isto implica nas desigualdades abaixo: [n/11]>=n/10 -1 [n/10]>=n/11+1 Observe também que a igualdade ocorre para n=110 , mas [n/10]-n/11 >= n/10-n/11=n/110>1 para n>110, logo não há soluções maiores do que 110 Em 28 de julho de 2017 10:05, Douglas Oliveira de Lima <

[obm-l] Re: [obm-l] Função f(n) = (1 + 1/n)^n é crescente?

2016-12-25 Por tôpico Pacini Bores
Oi Pedro, Já vi em alguns livros de cálculo esta prova, vou tentar lembrar em quais; mas de imediato lembro que no livro "The USSR olympiad problem book", " selected problems and theorems of elementary mathematics" acho que problema 149, ok ? Dê uma olhada. Abraços pacini Em

[obm-l] Re: [obm-l] Função f(n) = (1 + 1/n)^n é crescente?

2016-12-25 Por tôpico Ralph Teixeira
Vou indicar esqueleto de argumentos: Opcao 1: Use M.A.>=M.G. com os numeros 1, 1+1/n, 1+1/n,... 1+1/n (com n copias desse ultimo). Opcao 2: Fazendo contas, vem f(n+1)/f(n) = (1+1/n).(1-1/(n+1)^2)^(n+1). Agora, Bernoulli diz que (1+x)^n > 1+nx quando x>-1 (x<>0) e n>=2 (mostre isso usando inducao

[obm-l] Re: [obm-l] Função

2016-04-19 Por tôpico Pedro José
Boa tarde! Atendendo a observação me enviada, destaco no texto anterior o erro. F(x,y) = rj onde j=i*-1 e não j= i*+1. Saudações, PJMS Em 5 de abril de 2016 17:29, Pedro José escreveu: > Boa tarde! > > Faltou colocar que r0 = min(x,y) para o caso de r1=0. > > Saudações, >

[obm-l] Re: [obm-l] Re: [obm-l] Função Sobrejetiva

2016-02-03 Por tôpico Jeferson Almir
Peço ajuda na seguinte questão: Seja f: R -> Z tal que f(x) = [ x ∙ {x} ] a) Mostre que f(x) é sobrejetiva b) Resolva a equação [ x ∙ {x} ]= [ x ∙ [x] ] onde [ x ] é a parte inteira e { x } é a parte fracionária Em 17 de setembro de 2015 13:04, Esdras Muniz

[obm-l] Re: [obm-l] Re: [obm-l] Função Convexidade

2015-12-07 Por tôpico Israel Meireles Chrisostomo
vlw bernardo é negativa então é côncova, só queria que alguém que entendesse mais do que eu me desse certeza disso! Em 7 de dezembro de 2015 10:57, Bernardo Freitas Paulo da Costa < bernardo...@gmail.com> escreveu: > 2015-12-07 9:42 GMT-02:00 Israel Meireles Chrisostomo >

[obm-l] Re: [obm-l] Função Convexidade

2015-12-07 Por tôpico Pacini Bores
Sim, a segunda derivada é sempre negativa nesse intervalo e a concavidade está voltada para baixo. Pacini Em 07/12/2015 9:42, Israel Meireles Chrisostomo escreveu: > Olá rapazes, será que alguém poderia confirmar para mim que a função √senx é > côncova no intervalo (0,pi/2)? > -- >

[obm-l] Re: [obm-l] Re: [obm-l] Função Convexidade

2015-12-07 Por tôpico Israel Meireles Chrisostomo
Ok obrigado Em 7 de dezembro de 2015 10:07, Pacini Bores escreveu: > > > > Oi Israel, uma boa dica para confirmar algo desse tipo, é usar o site do > www.wolframalpha.com, ok? > > Abraços > > Pacini > > Em 07/12/2015 9:42, Israel Meireles Chrisostomo escreveu: > > Olá

[obm-l] Re: [obm-l] Função Convexidade

2015-12-07 Por tôpico Pacini Bores
Oi Israel, uma boa dica para confirmar algo desse tipo, é usar o site do www.wolframalpha.com [1], ok? Abraços Pacini Em 07/12/2015 9:42, Israel Meireles Chrisostomo escreveu: > Olá rapazes, será que alguém poderia confirmar para mim que a função √senx é > côncova no intervalo

[obm-l] Re: [obm-l] Função Convexidade

2015-12-07 Por tôpico Bernardo Freitas Paulo da Costa
2015-12-07 9:42 GMT-02:00 Israel Meireles Chrisostomo : > Olá rapazes, será que alguém poderia confirmar para mim que a função √senx é > côncova no intervalo (0,pi/2)? http://www.wolframalpha.com/input/?i=d%C2%B2%2Fdx%C2%B2%28sqrt%28sin%28x%29%29 -- Bernardo Freitas

[obm-l] Re: [obm-l] Função Sobrejetiva

2015-09-17 Por tôpico Esdras Muniz
Cara, vc pode fazer isso, pega duas sequências x_n e y_n, com lim f(x_n)=+infinito elim f(y_n)=-infinito, e lim(x_n)=+infinito e lim(y_n)=-infinito. Daí tu usa que f é contínua. vc pode pegar x_n=2kpi+pi/2 e y_n=-2kpi-pi/2. Em 17 de setembro de 2015 12:27, Jeferson Almir

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função

2015-09-02 Por tôpico Pedro José
Boa tarde! Não tinha me atentado. Porém, novamente creio que não exista esse n. seja (i) a + 1 = a * e^(1/6x) ==> log (a+1) = log a* 1/6x ==> 1/6x = log(a=1) - log a ==> 1/6x = log ( (a+1)/a) Seja f(a) = (a+1)/a ==> F(a) é monótona decrescente para a > 0 ==> (a+1)/a <= (1+1)/2, para todo a >0

[obm-l] Re: [obm-l] Re: [obm-l] Função

2015-09-01 Por tôpico Israel Meireles Chrisostomo
Na verdade Pedro José, eu não preciso que seja maior do que 1 para todos os inteiros, o que preciso é que seja maior do que 1 para algum inteiro x=n e para todos os inteiros maiores do que esse inteiro, aí consigo provar o que eu quero...E aí é possível?Por isso que citei provar que ocorre a

[obm-l] Re: [obm-l] Re: [obm-l] Função

2015-08-13 Por tôpico Israel Meireles Chrisostomo
ops menor do que 1 e maior do que -1 rsrsrs Em 13 de agosto de 2015 20:01, Israel Meireles Chrisostomo israelmchrisost...@gmail.com escreveu: Ah é verdade, devia ter pensado nisso antes fazendo a substituição por tagente chega-se a seno de x que é maior do que 1 e menor do que -1, vlw Ralph

[obm-l] Re: [obm-l] Re: [obm-l] Função

2015-08-13 Por tôpico Bernardo Freitas Paulo da Costa
2015-08-13 19:38 GMT-03:00 Ralph Teixeira ralp...@gmail.com: Tecnicamente, eu diria que f(x)=0 faz o que voce pediu. E sin(x) ? Mas a pergunta sobre a pergunta é: porquê você quer uma função assim? -- Bernardo Freitas Paulo da Costa -- Esta mensagem foi verificada pelo sistema de antiv�rus e

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Função

2015-08-13 Por tôpico Israel Meireles Chrisostomo
Eu quero uma função assim pq eu queria provar a bijetividade de um intervalo de R com R, o raciocínio está no novo post que postei aqui, vcs podiam me ajudar a verificar a correção do raciocínio...obrigado gente Em 13 de agosto de 2015 20:07, Bernardo Freitas Paulo da Costa bernardo...@gmail.com

[obm-l] Re: [obm-l] Função Peródica

2015-07-13 Por tôpico Marcelo Salhab Brogliato
Olá, Marcone, Se a função f é T-periódica, então: f(x+T) = f(x), para todo x inteiro. f(x+T) - f(x) = 0 sen(x^2+2xT+T^2) - sen(x^2) = 0 Sabemos que sen(x) - sen(y) = 2sen((x-y)/2).cos((x+y)/2), logo: 2 sen(xT + T^2/2) cos(x^2 + xT + T^2/2) = 0 Assim, temos dois casos: (i) xT + T^2/2 = k*pi

[obm-l] Re: [obm-l] Função periódica

2015-06-11 Por tôpico Bernardo Freitas Paulo da Costa
2015-06-11 8:53 GMT-03:00 marcone augusto araújo borges marconeborge...@hotmail.com: Seja f : R--- R definida por f(x) = sen(ax) + sen(bx), em que a e b são constantes reais. a) Se a e b são racionais, f é periódica? Sim. b) Vale a recíproca do item anterior? Não. Agradeço por ajuda

[obm-l] Re: [obm-l] Função O(x)

2014-09-05 Por tôpico Ralph Teixeira
Ajuda? http://en.wikipedia.org/wiki/Big_O_notation 2014-09-05 21:06 GMT-03:00 João Sousa starterm...@hotmail.com: Pessoal, alguém poderia me indicar um material em português, ou mesmo explicar aquela função O(x) que aparece em algumas explicações na matemática. Estou fazendo um curso de

[obm-l] Re: [obm-l] Função periodica

2013-10-02 Por tôpico saulo nilson
para b=0 da 1/T que nao e maior que T 2013/9/16 Francisco Lage franciscou...@gmail.com Alguém pode me ajudar? Seja F : R - R*+ , uma função continua e periódica de período T , prove que (1/T)*inegral(f(x)/f(x+b))dx de 0 até 1 é maior ou igual a T , para todo b real -- Francisco Lage

[obm-l] Re: [obm-l] Re: [obm-l] Função periodica

2013-09-16 Por tôpico Ralph Teixeira
Usando MA=MG, voce mostra que **=x1/x2+x2/x3+...+x(n-1)/xn+xn/x1 = n para quaisquer x1,x2,...,xn0. Suponha b=T/n. Entao divida a integral em n pedaços, com intervalos 0 a b, b a 2b, ..., (n-1)b a b. Coloque todas no intervalo 0 a b (tomando y=x na primeira, y=x-b na segunda, etc.), e voce vai

[obm-l] Re: [obm-l] Função periodica

2013-09-16 Por tôpico Bernardo Freitas Paulo da Costa
2013/9/16 Francisco Lage franciscou...@gmail.com: Alguém pode me ajudar? Seja F : R - R*+ , uma função continua e periódica de período T , prove que (1/T)*inegral(f(x)/f(x+b))dx de 0 até 1 é maior ou igual a T , para todo b real Isso tá meio errado... se f(x) = 1 para todo x, então a

[obm-l] Re: [obm-l] Re: [obm-l] Função periodica

2013-09-16 Por tôpico Francisco Lage
Eh isso mesmo , eu errei aqui ao escrever... Em 16/09/2013 14:00, Bernardo Freitas Paulo da Costa bernardo...@gmail.com escreveu: 2013/9/16 Francisco Lage franciscou...@gmail.com: Alguém pode me ajudar? Seja F : R - R*+ , uma função continua e periódica de período T , prove que

[obm-l] RE: [obm-l] Re: [obm-l] Função periódica

2013-06-24 Por tôpico marcone augusto araújo borges
valeu,Saulo! Date: Sun, 23 Jun 2013 18:27:20 -0300 Subject: [obm-l] Re: [obm-l] Função periódica From: saulo.nil...@gmail.com To: obm-l@mat.puc-rio.br procurando x1 f(x1)=0, se x1 e raiz entao x1+p tambem e logo o grafico da funçao corta o eixo x em dois pontos tendo um maximo ou um minimo

[obm-l] RE: [obm-l] RE: [obm-l] Re: [obm-l] Função periódica

2013-06-24 Por tôpico LEANDRO L RECOVA
Seja I=[0,T] o intervalo em que f:R-R e periodica. Como f e continua e definida sobre um conjunto compacto, entao f admite maximo e minimo. From: marconeborge...@hotmail.com To: obm-l@mat.puc-rio.br Subject: [obm-l] RE: [obm-l] Re: [obm-l] Função periódica Date: Mon, 24 Jun 2013 15:30:13 +

[obm-l] Re: [obm-l] Função periódica

2013-06-23 Por tôpico saulo nilson
procurando x1 f(x1)=0, se x1 e raiz entao x1+p tambem e logo o grafico da funçao corta o eixo x em dois pontos tendo um maximo ou um minimo. 2013/5/1 marcone augusto araújo borges marconeborge...@hotmail.com Uma função f:R-R é dita periódica quando existe um número real p 0,tal que f(x) =

[obm-l] Re: [obm-l] Função crescente e derivável tal que f tem limite real mas f' não vai para 0

2013-05-31 Por tôpico Bernardo Freitas Paulo da Costa
2013/5/31 Artur Costa Steiner steinerar...@gmail.com: Olá amigos! Isto não parece muito difícil, mas até agora não consegui. Exemplo de uma função de R em R (ou definida em (a, oo) para algum a) que seja crescente e derivável, seja tal que lim x -- oo f(x) = L em R e tal que a condição

[obm-l] Re: [obm-l] Função periódica

2013-05-02 Por tôpico Pedro Angelo
Se ela é contínua na reta, ela é contínua em qualquer intervalo compacto, por exemplo o intervalo [0,p], cuja imagem f([0,p]) já tem todos os valores que a função assume. Uma coisa legal é mostrar que se a função periódica for contínua em pelo menos um ponto, então existe um período fundamental,

[obm-l] Re: [obm-l] Função totiente de Euler

2013-04-21 Por tôpico Cassio Anderson Feitosa
Bom, acho que como muitos, sou um dos que acompanham a lista sem se manifestar, mas pelo menos essa acho que sei que fazer... rsrs Sendo m= P_1^{a_1} . P_2^{a_2} . . . P_i^{a_i}, onde nenhum a_k é zero, e n = P_1^{b_1} . P_2^{b_2} . . . P_i^{b_i} temos que m|n se, e somente se a_k =

[obm-l] Re: [obm-l] Função totiente de Euler

2013-04-21 Por tôpico Cassio Anderson Feitosa
Só uma correção: no começo, quando digo que nenhum a_k é zero, a condição na verdade é que nenhum b_k seja zero. E no fim, a condição é que nenhum a_k seja zero. Em 21 de abril de 2013 11:10, Cassio Anderson Feitosa cassiofeito...@gmail.com escreveu: Bom, acho que como muitos, sou um dos que

Re: [obm-l] Re: [obm-l] Função totiente de Euler

2013-04-21 Por tôpico Artur Costa Steiner
OK! Minha prova foi bem semelhante.  Partícipe mais.  Abraços.  Artur Artur Costa Steiner Mensagem original De : Cassio Anderson Feitosa cassiofeito...@gmail.com Data: Para: obm-l@mat.puc-rio.br Assunto: [obm-l] Re: [obm-l] Função totiente de Euler Só uma correção

[obm-l] RE: [obm-l] Função Quadrática e Desigualdade

2013-04-07 Por tôpico João Maldonado
É o teorema de Jensen, temos que provar que a função é convexa (meio fácil de ver né? ) Suponha o contrário, ou seja, f((x+y)/2) = [f(x) +f(y)]/2. E suponha x!=y teríamos a(x+y)²/4 + b(x+y)/2 + c = a(x²+y²)/2 + b(x+y)/2 + c = (x+y)² = 2(x²+y²) (x-y)²=0, absurdo []'s João Date: Sun, 7 Apr

[obm-l] Re: [obm-l] RE: [obm-l] Função Quadrática e Desigualdade

2013-04-07 Por tôpico Pedro Júnior
Falou João, muito obrigado! Em 7 de abril de 2013 15:16, João Maldonado joao_maldona...@hotmail.comescreveu: É o teorema de Jensen, temos que provar que a função é convexa (meio fácil de ver né? ) Suponha o contrário, ou seja, f((x+y)/2) = [f(x) +f(y)]/2. E suponha x!=y teríamos

[obm-l] RE: [obm-l] Função Quadrática e Desigualdade

2013-04-07 Por tôpico Hyon Ferreira Cordeiro
Temos que f''(x)= 2a 0 para todo x. Segue de Jensen que f(x+y/2) (f(x)+f(y))/2 Date: Sun, 7 Apr 2013 13:43:42 -0300 Subject: [obm-l] Função Quadrática e Desigualdade From: pedromatematic...@gmail.com To: obm-l@mat.puc-rio.br Seja f(x) = ax² + bx + c com a 0. Mostre que f((x+y)/2) [f(x)

[obm-l] Re: [obm-l] RE: [obm-l] Função Quadrática e Desigualdade

2013-04-07 Por tôpico Pedro Júnior
Já vi que usando o teorema fica simples... mas fiquei curioso com uma coisa: dos arquivos que baixei sobre a desiguldade de Jansen, nenhum deles mostra como foi intuida tal desigualdade. Usam indução numa desigualdade que surgiu de onde? Será que te uma prova direta... ou só o fato geométrico é

Re: [obm-l] Re: [obm-l] RE: [obm-l] Função Quadrática e Desigualdade

2013-04-07 Por tôpico Artur Costa Steiner
Não, para que uma prova seja matematicamente válida não podemos apelar para a geometria. A prova da desigualdade de Jensen baseia-se na definição de função convexa. Uma função com valores em R é convexa se, para todos x1 e x2 de seu domínio tivermos f(Lx1 + (1 - L)x2) = L f(x1) + (1 - L)

  1   2   3   >